Suture Deployment and Suture Management

4 KEY STEPS TO SUTURE DEPLOYMENT

Advance device and lift Lever (open Foot)

Maintain retraction and depress Plunger (deploy Needles)

Pull back Plunger (deploy Suture)

Lower Lever (close Foot)

SUTURE MANAGEMENT

Capture blue (rail) suture limb in Suture Gate and Advance Suture Knot

C

Lock Suture Knot by pulling white (non-rail) suture limb

Trim suture limbs by pulling Trimming Lever (<mark>Red</mark>) on Suture Trimmer

Information contained herein for DISTRIBUTION outside of the U.S. ONLY.

Check the regulatory status of the device in areas where CE marking is not the regulation in force ©2023 Abbott. All rights reserved. MAT-2012545 v5.0

MYNX CONTROL™ Vascular Closure Device: Designed for

Secure Extravascular Closure. In a wide range of clinical scenarios

Versatility

PROCEDURE STEPS

Position the balloon Result: Temporary haemostasis

Deploy the sealant Result: Consistent delivery

Remove the device

Result: Secure extravascular closure

What is a MANTA Device?

- The MANTA[™] Device is the first commercially available biomechanical vascular closure device designed specifically for large bore femoral arterial access site closure.¹
- Available in 14 Fr. and 18 Fr., a single MANTA[™] Device effectively closes femoral arterial access sites following the use of large bore sheaths ranging from 12 Fr. to 25 Fr. O.D.
- Applicable procedures:
 - Transcatheter aortic valve replacement (TAVR)
 - Endovascular aneurysm repair (EVAR)
 - Ventricular assist device (VAD)

SUPPORTING YOUR DAILY PRACTICE

WITH MARKET LEADING SOLUTIONS

THE FIRST CHOICE FOR RADIAL HEMOSTASIS

Radial Artery Occlusion¹ with patent haemostasis using

Radial Artery Compression Device

. Aminian A et al. J Am Coll Cardiol Intv. 2022 Jun, 15 (12) 1191–1201.

2. Abando A. et al. J Vasc Surg. 2004 Aug;40(2):287-90.

. Applegate RJ et al. J Invasive Cardiol. 2010;22(9):420-6.

